References
Export 183 results:
Author Title [ Type] Year Filters: First Letter Of Last Name is G [Clear All Filters]
Detection and spread of Phytophthora austrocedri within infected Juniperus communis woodland and diversity of co-associated Phytophthoras as revealed by metabarcoding. Forest Pathology [Internet]. 2020 ;50(3):e12602. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/efp.12602
. Detection, Diversity, and Population Dynamics of Waterborne Phytophthora ramorum Populations. Phytopathology [Internet]. 2015 ;105(1):57 - 68. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-07-13-0196-R
. Detection of mRNA by reverse-transcription PCR as an indicator of viability in Phytophthora ramorum. Forest Pathology [Internet]. 2012 ;42:14–21. Available from: http://dx.doi.org/10.1111/j.1439-0329.2011.00717.x
. Development of a quantitative real-time PCR assay for the detection of Phytophthora austrocedrae, an emerging pathogen in Britain. Forest Pathology [Internet]. 2013 :Early view. Available from: http://onlinelibrary.wiley.com/doi/10.1111/efp.12058/abstract
. Development of a real-time PCR assay for detection of Phytophthora kernoviae and comparison of this method with a conventional culturing technique. European Journal of Plant Pathology [Internet]. 2011 ;131:695-703. Available from: http://dx.doi.org/10.1007/s10658-011-9843-x
. Dieback and mortality of Juniperus communis in Britain associated with Phytophthora austrocedrae. New Disease Reports [Internet]. 2012 ;26:2. Available from: http://www.ndrs.org.uk/contents.php?vol=26http://www.ndrs.org.uk/article.php?id=026002
. Diversity of Phytophthora megakarya in Central and West Africa revealed by isozyme and RAPD markers. Mycological Research [Internet]. 1999 ;103(10):1225 - 1234. Available from: http://www.sciencedirect.com/science/article/pii/S0953756208606711
. Diversity of Phytophthora species in Valdivian rainforests and association with severe dieback symptoms . Forest Pathology [Internet]. 2018 :e12443. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/efp.12443
DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Molecular Ecology Resources [Internet]. 2011 ;11(6):1002–1011. Available from: http://dx.doi.org/10.1111/j.1755-0998.2011.03041.x
DNA-based method for rapid identification of the pine pathogen, Phytophthora pinifolia. FEMS Microbiology Letters [Internet]. 2009 ;298:99-104. Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1574-6968.2009.01700.x/abstract
. Effects of temperature on germination of sporangia, infection and protein secretion by Phytophthora kernoviae. Plant Pathology [Internet]. 2018 ;67(3):719 - 728. Available from: https://doi.org/10.1111/ppa.12782
. Efficacy of phosphonic acid, metalaxyl-M and copper hydroxide against Phytophthora ramorum in vitro and in planta. Plant Pathology [Internet]. 2009 ;58:111–119. Available from: http://dx.doi.org/10.1111/j.1365-3059.2008.01894.x
. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology [Internet]. 2012 ;20:131 - 138. Available from: http://www.sciencedirect.com/science/article/pii/S0966842X11002277
. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology [Internet]. 2012 ;20:131 - 138. Available from: http://www.sciencedirect.com/science/article/pii/S0966842X11002277
. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends in Microbiology [Internet]. 2012 ;20:131 - 138. Available from: http://www.sciencedirect.com/science/article/pii/S0966842X11002277
. Endemic and Emerging Pathogens Threatening Cork Oak Trees: Management Options for Conserving a Unique Forest Ecosystem. Plant Disease [Internet]. 2016 ;100(11):2184 - 2193. Available from: http://apsjournals.apsnet.org/doi/10.1094/PDIS-03-16-0408-FE
. Epidemiological modeling of invasion in heterogeneous landscapes: spread of sudden oak death in California (1990–2030). Ecosphere [Internet]. 2011 ;2:art17. Available from: http://www.esajournals.org/doi/abs/10.1890/ES10-00192.1
. Epidemiology of Phytophthora ramorum in Oregon tanoak forests. Canadian Journal of Forest Research [Internet]. Submitted ;38:1133-1143(11). Available from: http://www.nrcresearchpress.com/doi/abs/10.1139/X07-217#.UNIUO7aKS0c
. Etiology of oak decline in Spain. European Journal of Forest Pathology [Internet]. 1999 ;29:17–27. Available from: http://dx.doi.org/10.1046/j.1439-0329.1999.00128.x
. Evidence for the role of synchronicity between host phenology and pathogen activity in the distribution of sudden oak death canker disease. New Phytologist [Internet]. 2008 ;179:505–514. Available from: http://dx.doi.org/10.1111/j.1469-8137.2008.02450.x
. First report of bleeding canker caused by Phytophthora cactorum on horse chestnut in Turkey. Plant Disease [Internet]. 2002 ;86(6):697 - 697. Available from: http://dx.doi.org/10.1094/PDIS.2002.86.6.697C
. First Report of Collar and Root Rot Caused by Phytophthora tentaculata on Witloof Chicory (Cichorium intybus ) in Italy. Plant Disease [Internet]. 2010 ;94(12):1504 - 1504. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-03-10-0206
. First Report of Collar and Root Rot Caused by Phytophthora tentaculata on Witloof Chicory (Cichorium intybus ) in Italy. Plant Disease [Internet]. 2010 ;94(12):1504 - 1504. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-03-10-0206
. First Report of Collar and Root Rot Caused by Phytophthora tentaculata on Witloof Chicory (Cichorium intybus ) in Italy. Plant Disease [Internet]. 2010 ;94(12):1504 - 1504. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-03-10-0206
. First report of Phytophthora gonapodyides causing stem canker on European beech (Fagus sylvatica) in Southern Sweden. Plant Disease [Internet]. 2016 . Available from: http://apsjournals.apsnet.org/doi/10.1094/PDIS-04-16-0468-PDN
.