References

Export 604 results:
Author Title [ Type(Asc)] Year
Journal Article
Nechwatal J, Bakonyi J, Cacciola SO, Cooke DEL, Jung T, Nagy ZÁ, Vannini Á, Vettraino AM, Brasier CM. The morphology, behaviour and molecular phylogeny of Phytophthora taxon Salixsoil and its redesignation as Phytophthora lacustris sp. nov. Plant Pathology [Internet]. 2012 ;(2):355–369. Available from: http://dx.doi.org/10.1111/j.1365-3059.2012.02638.x
Henricot B, Pérez-Sierra A, Armstrong AC, Sharp PM, Green S. Morphological and genetic analyses of the invasive forest pathogen Phytophthora austrocedri reveal that two clonal lineages colonized Britain and Argentina from a common ancestral population. Phytopathology [Internet]. 2017 ;107(12):1532 - 1540. Available from: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-03-17-0126-Rhttps://apsjournals.apsnet.org/doi/pdf/10.1094/PHYTO-03-17-0126-R
Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM. A molecular phylogeny of Phytophthora and related Oomycetes. Fungal Genetics and Biology [Internet]. 2000 ;30:17-32. Available from: http://www.sciencedirect.com/science/article/B6WFV-45FC03G-1G/2/1cb8ec25d08dae3a16f56e74cd92e99e
Winton LM, Hansen EM. Molecular diagnosis of Phytophthora lateralis in trees, water, and foliage baits using multiplex polymerase chain reaction. Forest Pathology. 2001 ;31:275 - 283.
Martin FN, Tooley PW, Blomquist C. Molecular detection of Phytophthora ramorum, the causal agent of sudden oak death in California, and two additional species commonly recovered from diseased plant material. Phytopathology [Internet]. 2004 ;94:621-631. Available from: http://dx.doi.org/10.1094/PHYTO.2004.94.6.621
Marçais B, Dupuis F, Desprez-Loustau ML. Modelling the influence of winter frosts on the development of the stem canker of red oak, caused by Phytophthora cinnamomi. Annales des Sciences Forestiere [Internet]. 1996 ;53:369-382. Available from: http://dx.doi.org/10.1051/forest:19960219
La Manna L, Matteucci S, Kitzberger T. Modelling Phytophthora disease risk in Austrocedrus chilensis forests of Patagonia. European Journal of Forest Research [Internet]. 2011 :1-15. Available from: http://dx.doi.org/10.1007/s10342-011-0503-7
Dale AL, Feau N, Everhart SE, Dhillon B, Wong B, Sheppard J, Bilodeau GJ, Brar A, Tabima JF, Shen D, et al. Mitotic Recombination and Rapid Genome Evolution in the Invasive Forest Pathogen Phytophthora ramorum Taylor JW. mBio [Internet]. 2019 ;10(2). Available from: https://mbio.asm.org/content/10/2/e02452-18
Dadam D, Siasou E, Woodward S, Clark JA. Migratory passerine birds in Britain carry Phytophthora ramorum inoculum on their feathers and “feet” at low frequency. Forest Pathology [Internet]. 2020 ;50(1):e12569. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/efp.12569
Li AY, Crone M, Adams PJ, Fenwick SG, Hardy GESJ, Williams N. The Microscopic Examination of Phytophthora cinnamomi in Plant Tissues Using Fluorescent In Situ Hybridization. Journal of Phytopathology [Internet]. 2014 ;162(11-12):747 - 757. Available from: http://doi.wiley.com/10.1111/jph.2014.162.issue-11-12http://doi.wiley.com/10.1111/jph.12257
Ivors K, Garbelotto M, Vries IDE, Ruyter-Spira C, Hekkert TEB, Rosenzweig N, Bonants P. Microsatellite markers identify three lineages of Phytophthora ramorum in US nurseries, yet single lineages in US forest and European nursery populations. Molecular Ecology [Internet]. 2006 ;15:1493–1505. Available from: http://dx.doi.org/10.1111/j.1365-294X.2006.02864.x
Mfegue CV, Herail C, Adreit H, Mbenoun M, Techou Z, Ten Hoopen M, Tharreau D, Ducamp M. Microsatellite markers for population studies of Phytophthora megakarya (Pythiaceae), a cacao pathogen in Africa. American Journal of Botany [Internet]. 2012 ;99:e353-e356. Available from: http://www.amjbot.org/content/early/2012/08/29/ajb.1200053.abstract
Serrano MS, Osmundson T, Almaraz-Sanchez A, Croucher PJP, Swiecki T, Alvarado D, Garbelotto M. A microsatellite analysis identifies global pathways of movement of Phytophthora cinnamomi and the likely sources of wildland infestations in California and Mexico. Phytopathology [Internet]. 2019 . Available from: https://apsjournals.apsnet.org/doi/10.1094/PHYTO-03-19-0102-R
Català S, Berbegal M, Pérez-Sierra A, Abad-Campos P. Metabarcoding and development of new Real-time specific assays reveal Phytophthora species diversity in Holm Oak forests in eastern Spain. Plant Pathology [Internet]. 2017 ;66:115–123. Available from: http://doi.wiley.com/10.1111/ppa.12541
Chen W, Djama ZR, Coffey MD, Martin FN, Bilodeau GJ, Radmer L, Denton G, Lévesque AC. Membrane-based oligonucleotide array developed from multiple markers for the detection of many Phytophthora species. Phytopathology. 2013 ;103(1):43 - 54.
Hansen EM, Goheen DJ, Jules ES, Ullian B. Managing Port-Orford-Cedar and the Introduced Pathogen Phytophthora lateralis. Plant Disease [Internet]. 2000 ;84:4-14. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS.2000.84.1.4
Ganley RJ, Williams NM, Rolando CA, Hood IA, Dungey HS, Beets PN, Bulman LS. Management of red needle cast, caused by Phytophthora pluvialis, a new disease of radiata pine in New Zealand. New Zealand Plant Protection [Internet]. 2014 ;67:48–53. Available from: http://www.nzpps.org/nzpp_abstract.php?paper=670480
Akrofi AY, Appiah AA, Opoku IY. Management of Phytophthora pod rot disease on cocoa farms in Ghana. Crop Protection [Internet]. 2003 ;22(3):469 - 477. Available from: http://www.sciencedirect.com/science/article/pii/S026121940200193X
OpokuI Y, Assuah MK, Aneani F. Management of black pod disease of cocoa with reduced number of fungicide application and crop sanitation. African Journal of Agricultural Research [Internet]. 2007 ;2(11):601–604. Available from: http://www.academicjournals.org/article/article1380898856_Opoku%20et%20al.pdf
Ristaino JB. A Lucid key to the common species of Phytophthora. Plant Disease [Internet]. 2012 ;96:897-903. Available from: http://dx.doi.org/10.1094/PDIS-08-11-0636
Collins S, McComb JA, Howard K, Shearer BL, Colquhoun IJ, Hardy SGEJ. The long-term survival of Phytophthora cinnamomi in mature Banksia grandis killed by the pathogen. Forest Pathology [Internet]. 2012 ;42:28–36. Available from: http://dx.doi.org/10.1111/j.1439-0329.2011.00718.x
Campbell WA, Copeland OL. Littleleaf disease of shortleaf and loblolly pines. 1954 :41 pages.
Eyre CA, Hayden KJ, Kozanitas M, Grünwald NJ, Garbelotto M. Lineage, Temperature, and Host Species have Interacting Effects on Lesion Development in Phytophthora ramorum. Plant Disease [Internet]. 2014 ;98(12):1717 - 1727. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-02-14-0151-RE
Maora JS, Liew ECY, Guest DI. Limited morphological, physiological and genetic diversity of Phytophthora palmivora from cocoa in Papua New Guinea. Plant Pathology [Internet]. 2017 ;66:124–130. Available from: http://doi.wiley.com/10.1111/ppa.12557
Blackwell E. The life history of Phytophthora cactorum (Leb. & Cohn) Schroet. Transactions of the British Mycological Society [Internet]. 1943 ;26:71 - 89. Available from: http://www.sciencedirect.com/science/article/B985G-4YW2HHM-D/2/d8cd209743ea7bb728b94dadd761bd5d

Pages