References

Export 604 results:
Author [ Title(Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Ashby SF. Strains and taxonomy of Phytophthora palmivora Butler (P. Faberi Maubl.). Transactions of the British Mycological Society [Internet]. 1929 ;14(1-2):18 - 38. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0007153629800253
Elegbede CF, Pierrat J-C, Aguayo J, Husson C, Halkett F, c}ais B{\^ıt M{\c. A statistical model to detect asymptomatic infectious individuals with an application in the Phytophthora alni-Induced alder decline. Phytopathology [Internet]. 2010 ;100:1262-1269. Available from: http://dx.doi.org/10.1094/PHYTO-05-10-0140
Grünwald NJ, Goss EM, Ivors K, Garbelotto M, Martin FN, Prospero S, Hansen E, Bonants PJM, Hamelin RC, Chastagner G, et al. Standardizing the nomenclature for clonal lineages of the sudden oak death pathogen, Phytophthora ramorum. Phytopathology [Internet]. 2009 ;99:792-795. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-99-7-0792
Amoroso MM, Larson BC. Stand development patterns as a consequence of the mortality in Austrocedrus chilensis forests. Forest Ecology and Management. 2010 ;259:1981-1992.
Jules ES, Kauffman MJ, Ritts WD, Carroll AL. Spread of an invasive pathogen over a variable landscape: a non-native root rot on Port Orford cedar. Ecology [Internet]. 2002 ;83:3167-3181. Available from: http://www.esajournals.org/doi/abs/10.1890/0012-9658%282002%29083%5B3167%3ASOAIPO%5D2.0.CO%3B2
Harris AR, Webber JF. Sporulation potential, symptom expression and detection of Phytophthora ramorum on larch needles and other foliar hosts. Plant Pathology [Internet]. 2016 ;65(9):1441 - 1451. Available from: https://doi.org/10.1111/ppa.12538
Rosenthal LMicaela, Fajardo SN, Rizzo D. Sporulation potential of Phytophthora ramorum differs among common California plant species in the Big Sur region. Plant Disease [Internet]. 2020 . Available from: https://apsjournals.apsnet.org/doi/10.1094/PDIS-03-20-0485-RE
Trione EJ. Sporulation and germination of Phytophthora lateralis. Phytopathology [Internet]. 1974 ;64:1531-1533. Available from: http://www.apsnet.org/publications/phytopathology/backissues/Documents/1974Abstracts/Phyto64_1531.htm
Hansen EM, Maxwell DP. Species of the Phytophthora megasperma complex. Mycologia, [Internet]. 1991 ;83:376-381. Available from: http://www.jstor.org/stable/3759999
Érsek T, Nagy Z. Species hybrids in the genus Phytophthora with emphasis on the alder pathogen Phytophthora alni: a review. European Journal of Plant Pathology [Internet]. 2008 ;122:31-39. Available from: http://dx.doi.org/10.1007/s10658-008-9296-z
Rosso PH, Baccalá N, Havrylenko M, Fontenla S. Spatial pattern of Austrocedrus chilensis wilting and the scope of autocorrelation analysis in natural forests. Forest Ecology and Management [Internet]. 1994 ;67:273-279. Available from: http://dx.doi.org.proxy.library.oregonstate.edu/10.1016/0378-1127(94)90022-1
Robin C, Desprez-Loustau M-L, Delatour C. Spatial and temporal enlargement of trunk cankers of Phytophthora cinnamomi in red oak. Canadian Journal of Forest Research [Internet]. 1992 ;22:362-366. Available from: http://www.nrcresearchpress.com/doi/abs/10.1139/x92-047
Davidson JM, Patterson HA, Rizzo DM. Sources of inoculum for Phytophthora ramorum in a redwood forest. Phytopathology [Internet]. 2008 ;98:860-866. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PHYTO-98-8-0860
Peterson E, Hansen E, Hulbert J. Source or sink? The role of soil and water borne inoculum in the dispersal of Phytophthora ramorum in Oregon tanoak forests. Forest Ecology and Management [Internet]. 2014 ;322:48 - 57. Available from: http://linkinghub.elsevier.com/retrieve/pii/S0378112714001261
Oßwald W, Jung T, Nechwatal J, Schlenzig A, Fleischmann F. Significance of Phytophthoras and Pythium for oak, alder and spruce decline. Journal of Forest Science. 2001 ;47(Special Issue):96-103 .
La Manna L, Collantes M, Bava J. Seedling recruitment of Austrocedrus chilensis in relation to cattle use, microsite environment and forest disease. Ecologia Austral.(Abr. 2008 ;18:27–41.
Rodríguez-Molina MC, Blanco-Santos A, Palo-Núñez EJ, Torres-Vila LM, Torres-Álvarez E, Suárez-de-la-Cámara MA. Seasonal and spatial mortality patterns of holm oak seedlings in a reforested soil infected with Phytophthora cinnamomi. Forest Pathology [Internet]. 2005 ;35:411–422. Available from: http://dx.doi.org/10.1111/j.1439-0329.2005.00423.x
Ríos P, Obregón S, González M, de Haro A, Sanchez ME. Screening brassicaceous plants as biofumigants for management of Phytophthora cinnamomi oak disease Woodward S. Forest Pathology [Internet]. 2016 . Available from: http://doi.wiley.com/10.1111/efp.12287http://api.wiley.com/onlinelibrary/tdm/v1/articles/10.1111%2Fefp.12287
Vettraino AM, Vannini A. Scotch broom: a new host of Phytophthora megasperma in Italy. Plant Pathology [Internet]. 2003 ;52:417–417. Available from: http://dx.doi.org/10.1046/j.1365-3059.2003.00839.x
EFSA Panel on Plant Health (PLH). Scientific opinion on the pest risk analysis on Phytophthora ramorum prepared by the FP6 project RAPRA. EFSA Journal [Internet]. 2011 ;9(6):107 pp. Available from: http://www.efsa.europa.eu/en/efsajournal/pub/2186.htm
Ioos R, Husson C, Andrieux A, Frey P. SCAR–based PCR primers to detect the hybrid pathogen Phytophthora alni and its subspecies causing alder disease in Europe. European Journal of Plant Pathology [Internet]. 2005 ;112:323-335. Available from: http://dx.doi.org/10.1007/s10658-005-6233-2

Pages