Screening brassicaceous plants as biofumigants for management of Phytophthora cinnamomi oak disease

Publication Type:

Journal Article


Forest Pathology (2016)



Brassicaceous plants rich in glucosinolates have been used as biofumigants for the management of soilborne pathogens. Efficacy of Brassica plant tissue has mainly been attributed to toxic isothiocyanates released upon the hydrolysis of glucosinolates. Management of Phytophthora cinnamomi, the causal agent of oak root rot in rangeland ecosystems using biofumigation, is promising, but requires further validation. The biofumigation activity of 14 brassicaceous plants was evaluated under experimental conditions. All evaluated plants rich in sinigrin suppressed (100%) the mycelial growth of P. cinnamomi, while plants rich in aromatic or other aliphatic glucosinolates had little or no suppressive effect. Simulating soil amendment in field conditions, the effects on natural soil artificially infested with P. cinnamomi chlamydospores were examined with Brassica juncea, Eruca vesicaria and Lepidium sativum, three species with different glucosinolate profiles. Only B. juncea decreased the viability of chlamydospores significantly in comparison with untreated soil only 1 day after biofumigation, whereas E. vesicaria needed 8 days to reach significance and L. sativum had no effect at all. Despite the decreases in soil inoculum, biofumigation with B. juncea did not prevent the root infections in a highly susceptible host (Lupinus luteus). However, biofumigation with plants rich in sinigrin, such as B. juncea, decreased P. cinnamomi soil inoculum under the experimental minimum threshold for oak disease expression. Although biofumigation should be considered as an effective measure to be incorporated in integrated control of the oak disease, biofumigation by itself would not be effective enough for the substantial suppression of P. cinnamomi inoculum.