References
Export 250 results:
Author Title [ Type] Year Filters: First Letter Of Last Name is B [Clear All Filters]
Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology [Internet]. 2004 ;41(8):766 - 782. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1087184504000611
. Phenotypic diversification Is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum. PLoS ONE [Internet]. 2012 ;7:e34728. Available from: http://dx.doi.org/10.1371%2Fjournal.pone.0034728
. PCR-RFLP markers identify three lineages of the North American and European populations of Phytophthora ramorum. Forest Pathology [Internet]. 2009 ;39:266–278. Available from: http://dx.doi.org/10.1111/j.1439-0329.2008.00586.x
. PCR-based DNA Markers for identifying hybrids within Phytophthora alni. Journal of Phytopathology [Internet]. 2006 ;154:168–177. Available from: http://dx.doi.org/10.1111/j.1439-0434.2006.01079.x
. Pathogenicity of Phytophthora pluvialis to Pinus radiata and its relation with red needle cast disease in New Zealand. New Zealand Journal of Forestry Science [Internet]. 2014 ;44(1):6. Available from: http://www.nzjforestryscience.com/content/44/1/6
. Pathogenicity of Phytophthora pluvialis to Pinus radiata and its relation with red needle cast disease in New Zealand. New Zealand Journal of Forestry Science [Internet]. 2014 ;44(1):6. Available from: http://www.nzjforestryscience.com/content/44/1/6
. Pathogenicity of Phytophthora multivora to Eucalyptus gomphocephala and Eucalyptus marginata. Forest Pathology [Internet]. 2011 ;42:289–298. Available from: http://dx.doi.org/10.1111/j.1439-0329.2011.00753.x
. Pathogenicity of Phytophthora lateralis lineages on resistant and susceptible selections of Chamaecyparis lawsoniana. Plant Disease [Internet]. 2014 . Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS-07-14-0720-RE
. Pathogenicity of four Phytophthora species on wild cherry and Italian alder seedlings. Journal of Phytopathology [Internet]. 2006 ;154:163–167. Available from: http://dx.doi.org/10.1111/j.1439-0434.2006.01077.x
. Pathogenicity of four Phytophthora species on wild cherry and Italian alder seedlings. Journal of Phytopathology [Internet]. 2006 ;154:163–167. Available from: http://dx.doi.org/10.1111/j.1439-0434.2006.01077.x
. An Overview of Canadian Research Activities on Diseases Caused by Phytophthora ramorum: Results, Progress, and Challenges. Plant Disease [Internet]. 2018 ;102(7):1218 - 1233. Available from: https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-17-1730-FE
An Overview of Canadian Research Activities on Diseases Caused by Phytophthora ramorum: Results, Progress, and Challenges. Plant Disease [Internet]. 2018 ;102(7):1218 - 1233. Available from: https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-17-1730-FE
An Overview of Canadian Research Activities on Diseases Caused by Phytophthora ramorum: Results, Progress, and Challenges. Plant Disease [Internet]. 2018 ;102(7):1218 - 1233. Available from: https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-17-1730-FE
An Overview of Canadian Research Activities on Diseases Caused by Phytophthora ramorum: Results, Progress, and Challenges. Plant Disease [Internet]. 2018 ;102(7):1218 - 1233. Available from: https://apsjournals.apsnet.org/doi/10.1094/PDIS-11-17-1730-FE
An overview of Australia’s Phytophthora species assemblage in natural ecosystems recovered from a survey in Victoria. IMA Fungus [Internet]. 2016 ;7(1):47-58. Available from: http://www.ingentaconnect.com/content/ima/imafung/pre-prints/content-k4_Vol7_no1_Article4
. Origin of a new Phytophthora pathogen through interspecific hybridization. Proceedings of the National Academy of Sciences of the United States of America [Internet]. 1999 ;96:5878-5883. Available from: http://www.pnas.org/content/96/10/5878.abstract
. On-Site DNA Extraction and Real-Time PCR for Detection of Phytophthora ramorum in the FieldABSTRACT. Applied and Environmental Microbiology [Internet]. 2005 ;71(11):6702 - 6710. Available from: https://pubmed.ncbi.nlm.nih.gov/16269700/
. On-Site DNA Extraction and Real-Time PCR for Detection of Phytophthora ramorum in the FieldABSTRACT. Applied and Environmental Microbiology [Internet]. 2005 ;71(11):6702 - 6710. Available from: https://pubmed.ncbi.nlm.nih.gov/16269700/
. Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology [Internet]. 2002 ;32:19–28. Available from: http://dx.doi.org/10.1046/j.1439-0329.2002.00264.x
. Occurrence of Phytophthora species in oak stands in Italy and their association with declining oak trees. Forest Pathology [Internet]. 2002 ;32:19–28. Available from: http://dx.doi.org/10.1046/j.1439-0329.2002.00264.x
. Occurrence of Phytophthora cinnamomi in cork oak forests in Italy . Forest Pathology [Internet]. 2013 ;43(4):340–343. Available from: http://onlinelibrary.wiley.com/doi/10.1111/efp.12039/abstract
. The occurrence of Phytophthora and Pythium species on roots of native plants in northern California and southern Oregon. Phytopathology. 1955 ;45:694 (abstract).
. Oak mortality in Iberia. Nature [Internet]. 1992 ;360:539-539. Available from: http://www.nature.com/nature/journal/v360/n6404/abs/360539a0.html
. A new threat to UK heathland from Phytophthora kernoviae on Vaccinium myrtillus in the wild. Plant Pathology [Internet]. 2009 ;58:393–393. Available from: http://dx.doi.org/10.1111/j.1365-3059.2008.01961.x
. A new Phytophthora root disease of alder in Italy. Plant Disease [Internet]. 2001 ;85:560-560. Available from: http://apsjournals.apsnet.org/doi/abs/10.1094/PDIS.2001.85.5.560A
.