Multiple new phenotypic taxa from trees and riparian ecosystems in Phytophthora gonapodyides-P. megasperma ITS Clade 6, which tend to be high-temperature tolerant and either inbreeding or sterile

Publication Type:

Journal Article

Source:

Mycological Research, Volume 107, Issue 3, p.277 - 290 (2003)

URL:

http://linkinghub.elsevier.com/retrieve/pii/S0953756208611788

Abstract:

Phytophthora isolates associated with Phytophthora major ITS Clade 6 were grouped into 11 phenotypic taxa. These comprised the described morphospecies P. gonapodyides, P. megasperma s. str. and P. humicola; four previously identified but so far undescribed taxa, informally designated here P. sp. O-group, P. sp. Apple-cherry, P. taxon Pgchlamydo, and P. taxon Walnut; and four previously unknown taxa, designated P. taxon Oaksoil, P. taxon Raspberry, P. taxon Forestsoil, and P. taxon Riversoil. With the exception of P. gonapodyides each phenotypic taxon represented an unique ITS lineage. Two isolates morphologically identical to P. gonapodyides comprised a separate lineage and probably represent another taxon, designated here P. taxon Salixsoil. P. humicola, P. sp. O-group, P. sp. Apple-cherry and P. taxon Walnut grouped together as subclade I. Within subclade II, P. taxon Oaksoil, P. taxon Raspberry, P. taxon Forestsoil, P. taxon Riversoil and P. taxon Pgchlamydo formed a cluster of closely related but phenotypically distinct lineages basal to P. gonapodyides and P. megasperma, P. taxon Salixsoil being the most basal member. The taxonomy, adaptation and breeding systems of Clade 6 taxa are discussed. They show a strong association with forests and riparian ecosystems, only a limited association with agriculture and an ability to tolerate high temperatures. Also, in contrast to most other Phytophthora clades, Clade 6 taxa are predominantly sterile or inbreeding in culture. Only one taxon, P. sp. O-group, appears classically A1/A2 heterothallic.