Decline in vitality of propagules of Phytophthora pluvialis and Phytophthora kernoviae and their inability to contaminate or colonise bark and sapwood in Pinus radiata export log simulation studies

Publication Type:

Journal Article

Source:

New Zealand Journal of Forestry Science, Volume 44, Issue 7, p.13 pp (2014)

URL:

http://www.nzjforestryscience.com/content/44/1/7

Abstract:

Background: Phytophthora pluvialis Reeser, W.L. Sutton & E.M. Hansen is the cause of a newly described disease, red needle cast, in certain stands of Pinus radiata D. Don in New Zealand that experience periodic foliage browning, while Phytophthora kernoviae Brasier, Beales & Kirk is also infrequently isolated from symptomatic needles.

Methods: Studies were undertaken to test the possibility that these species may be transported on pine logs either as superficial contaminants or as colonists of bark or wood.

Results: Pine-needle baiting found no evidence of Phytophthora species in bark samples or aqueous bark washes from stems of 603 symptomatic trees in 17 affected stands implying that survival after natural deposition of sporangia or zoospores is low or absent. The persistence of zoospores or oospores was evaluated at intervals after applying them at artificially high surface densities to the bark on log segments and incubating at five temperatures between 15°C and 35°C in the laboratory. The ability to re-isolate Phytophthora kernoviae decreased with time and increasing temperature, but this species was s till obtained at low frequencies after 4 weeks at 15°C and 20°C following treatment with oospores of Phytophthora kernoviae. Phytophthora pluvialis could not be isolated under any conditions of time or temperature tested. Percentage vitality of oospores of both species as determined using tetrazolium bromide vital staining also decreased with time, although some oospores of both species remained alive after 4 weeks at all temperatures tested. In a further study to test potential log colonisation, Phytophthora spp. were not isolated from bark or xylem at or near points where zoospores, oospores or mycelium of either species were applied to the bark or sapwood of pine segments and incubated for 6 weeks under ambient or humid conditions at 17°C.

Conclusion: The results of these studies suggest that occurrence of Phytophthora kernoviae or Phytophthora pluvialis on export logs from affected stands is negligible. In addition, although some remained alive, the substantial decline in vitality among artificially applied oospores implies that the survival of any few that may be naturally present on logs is likely to be slight. Based on the evidence from this work there appears to be little risk of transporting these Phytophthora species on New Zealand radiata pine logs.