The Effect of Exposure to Decreasing Relative Humidity on the Viability of Phytophthora ramorum sporangia

TitleThe Effect of Exposure to Decreasing Relative Humidity on the Viability of Phytophthora ramorum sporangia
Publication TypeJournal Article
Year of Publication2016
AuthorsTooley, PW, Browning, M
JournalJournal of Phytopathology
Volume164
Issue11-12
Pagination874 - 881
Date PublishedAug 2016
Abstract

Sporangia of three isolates of Phytophthora ramorum representing three different clonal lineages were subjected to relative humidity (RH) levels between 80 and 100% for exposure periods ranging from 1 to 24 h at 20°C in darkness. Plastic containers (21.5 × 14.5 × 5 cm) were used as humidity chambers with 130 ml of glycerine solution added to each container. Glycerine concentrations corresponded to 100, 95, 90, 85 and 80% RH based on refractive index measurements. Sporangia suspensions were pipeted onto nitrile mesh squares (1.5 × 1.5 cm, 15 micron pore size) which were placed in the humidity chambers and incubated at 20°C in darkness. Following exposure periods of 1, 2, 4, 8, 12 and 24 h, mesh squares were inverted onto Petri dishes of selective medium and sporangia germination assessed after 24 and 48 h. At 100% RH, we observed a mean value of 88% germination after 1 h exposure declining to 18% germination following 24 h incubation. At 95% RH, a steeper decline in germination was noted, with means ranging from 79% at 1 h to less than 1% at 24 h exposure. At 90% RH, no germination was noted after 8 or more h exposure, and values were 57%, 22% and 3% germination for the 1, 2 and 4 h exposures, respectively. Germination was only observed at 1 h exposure for both the 85% RH treatment (52% germination) and the 80% RH treatment (38% germination). The three isolates responded similarly over the range of RH values tested. The germination response of P. ramorum sporangia to RH values between 80% and 100% was comparable to that reported for other Phytophthora species. Knowledge of conditions that affect Pramorum sporangia germination can shed light on pathogenesis and epidemic potential and lead to improved control recommendations.

URLhttps://doi.org/10.1111/jph.12506
DOI10.1111/jph.2016.164.issue-11pt1210.1111/jph.12506
Short TitleJ Phytopathol